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Eulerian and ALE (arbitrary Lagrangian-Eulerian) hydrodynamics 
programs usually split a timestep into two parts. The first part is a 
Lagrangian step, which calculates the incremental motion of the 
material. The second part is referred to as the Eulerian step, the advec- 
tion step, or the remap step, and it accounts for the transport of material 
between cells, In most finite difference and finite element formulations, 
all the solution variables except the velocities are cell-centered while 
the velocities are edge- or vertex-centered. As a result, the advection 
algorithm for the momentum is, by necessity, different than the algo- 
rithm used for the other variables. This paper reviews three momentum 
advection methods and proposes a new one. One method, pioneered in 
YAQUI, creates a new staggered mesh, while the other two, used in 
SALE and SHALE, are cell-centered. The new method is cell-centered 
and its relationship to the other methods is discussed. Both pure advec- 
tion and strong shock calculations are presented to substantiate the 
mathematical analysis. From the standpoint of numerical accuracy, 
both the staggered mesh and the cell-centered algorithms can give 
good results, while the computational costs are highly dependent on 
the overall architecture of a code. 0 1992 Academic Press. Inc 

INTRODUCTION 

During the addition of a simplified ALE Cl] (arbitrary 
Eulerian-Lagrangian) capability to DYNA2D [2], the 
author discovered that there was no direct comparison of 
the different algorithms for advecting momentum in the 
literature. It is the goal of this paper to fill that void. 

In the analysis presented in this paper, the hydrodynamic 
calculation is assumed to be split into separate Lagrangian 
and Eulerian steps. The Lagrangian step may be performed 
by any of a number of well-known finite difference stencils 
(e.g., [3-51) or finite element formulations (e.g., [6-S]). 
The only assumption made here about the Lagrangian step 
is that the data are staggered: the velocities are centered at 
the nodes while the stress, density, internal energy, and all 
the history variables are centered in the cells. 

The nomenclature of the finite difference community is 
adopted in this paper although the methods discussed are 
equally applicable to finite element formulations. A logically 

* This work was supported by Nippon Oil and Fats Co., Ltd. 

regular mesh is assumed. In one dimension, nodes are 
assigned integer numbers from left to right. The cell defined 
by nodes j and j + 1 is labelled j + $. In two dimensions, the 
mesh defined by intersecting k and 1 lines; see Fig. 1. Nodes 
are referred to by the numbers of their intersecting k and I 
lines, e.g., (k, /), while cells are offset by 5 $, e.g., 
(k + 4, I+ t). 

The advection algorithms for the momentum are con- 
structed from the cell-centered algorithms used for the other 
variables. Two different advection algorithms are used in 
this paper, but the conclusions presented here are valid in 
general. The first one is the popular van Leer MUSCL [9] 
algorithm, which is used in a number of Eulerian and ALE 
codes such as CAVEAT [lo], CSQ [ 111, DYNA2D [ 123, 
and PISCES [ 131. It is monotonic, an important attribute 
for the advection of variables that have a limited range, and 
it is nonlinear, making a dispersion analysis impossible. 
The implicit SUPG (streamline, upwind Petrov-Galerkin) 
method [ 151, developed by Hughes and others, is a linear 
method for the pure advection problem and it can, there- 
fore, be characterized by a classical dispersion analysis. 
Aside from its lack of monotonicity, it works as well as 
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FIG. 1. The two-dimensional mesh is detined by the intersections of 
the k and I lines. Nodes are numbered by the integer pairs of their inter- 
secting mesh lines, and the cell numbers are staggered with respect to the 
nodes by + f 
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the van Leer algorithm. Both of these algorithms are 
summarized in the Appendix. 

1. A SIMPLIFIED STAGGERED MESH ALGORITHM 

Advection in One Dimension 

All the shortcomings of the algorithms discussed in this 
paper can be demonstrated in one dimension. Clearly an 
algorithm that fails in one dimension will not work in two 
or three dimensions. The momentum advection algorithms 
will be presented in one and two dimensions, but their 
mathematical analysis will be largely restricted to one 
dimension. This section establishes the notation used in the 
one-dimensional analyses. 

The one-dimensional scalar advection equation is a 
natural, nontrivial test case for an advection algorithm. The 
solution variable, 4(x, t), is transported with a constant 
velocity c relative to the spatial coordinate x. The exact 
solution for 0(x, t) is f&(x - et). 

ad ad jt+cz=o, the integral of 4 over the mesh is not 
changed by the advection. 

The Staggered Mesh Algorithm in One Dimension 

YAQUI [ 161 was the first code to construct a staggered 
mesh for the momentum advection, and the basic idea is 
still in common use. A mesh is constructed staggered with 
respect to the original mesh so that the original cell cen- 
troids become the new nodes; see Fig. 1. A cell-centered 
advection algorithm is then applied to new staggered mesh. 
The data necessary for the advection algorithm are the cell 
volumes, the values of 4 in the cells, and the fluxes between 
the cells. All the data are readily defined except the fluxes. 
DeBar [ 1 S] invoked the following consistency condition to 
derive a set of staggered mass fluxes: If a body has a uniform 
velocity and a variable density before advection, then the 

body must have the same uniform velocity after advection. 
The equation corresponding to Eq. (1.2) on the staggered 
mesh is Eq. ( 1.3), where the transport mass, pj+ 1,2 fj+ 1,2, is 
denotedx.+ ,,2 to distinguish it from the transport volume, 

v+ = M~-v,’ +vi~1/2Jj-~L/2-v~+I/2~~+1/2 

I 
Ml+ (1.3) 

.T+I/Z=i(Pifi+Pj+lfi+I) 

= SCJ1+J+d. 

(1.4) 

Calculations performed by the author involving strong 
shocks (Section 6) have shown that while advecting 
momentum with an average of the transport volumes leads 
to extreme shock overheating, advecting the velocity with 
the average of the transport masses, Eq. (1.4), gives good 
results. 

A dispersion analysis starts with Eq. (1.1) discretized on 
a uniform mesh and a constant value of c. From the con- 
struction of the staggered mesh, it is clear that this momen- 
tum advection algorithm inherits the dispersion properties 
of the underlying cell-centered advection algorithm. 

Advection in Two Dimensions 

A quadrilateral cell is surrounded by eight other cells, and 
it can exchange material with each of them. The transport 
volumes are labelled by the logical location of their 
centroid, e.g., the volume flux on the right edge of cell 
@+iJ+i) isfck+1,,+1,2j; see Fig. 2. By convention, the 
transport volumes are considered to be positive if they 
transport material in either of the two positive logical 
directions. 

There is a degree of latitude in how the staggered mesh is 
defined in two dimensions that is not present in one dimen- 
sion. Only the simplest extension of the one-dimensional 

FIG. 2. Mass transport is assumed to occur only through the cell 
edges. The coupling between diagonal cells is ignored. 
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idea is presented. This extension differs from most staggered 
mesh implementations (e.g., Ref. [20]), including the 
original YAQUI algorithm, in that it does not explicitly 
define control volumes. A simple lumped mass matrix 
formulation is assumed: the mass of a cell is divided evenly 
among its nodes, 

~(k.I,=a(~(k~1/2.~-1/2)+~(k+1/2,f~1/2) 

+M (k+I/2,/+1/2)+~~k~1/2,/+1,2)). (1.5) 

The consistency condition is again used to define the 
staggered transport masses for the momentum advection. 
By assumption, the mass transport along the k lines is 
independent of the mass transport along the I lines and 
vice versa: 

Advantages and Disadvantages 

The two primary advantages of the staggered mesh algo- 
rithm are: (1) it has the same dispersion and monotonicity 
characteristic as the cell-centered algorithm, and (2) each 
velocity component is advected as a single variable. As will 
be shown later, the cell-centered advection algorithms 
require several variables (two for one dimension, four for 
two dimensions, and eight for three dimensions) to be 
advected for each velocity component in order to avoid 
adding dispersion errors to the solution. 

One criticism of the staggered mesh algorithm is that it 
smears strong shocks [17], but the author has not experi- 
enced this problem in his low Courant number ALE calcula- 
tions or in the one-dimensional Eulerian test calculations in 
this paper, nor has Christensen [21] experienced it with his 
two-dimensional Eulerian calculations. The cell-centered 
algorithm in SALE was compared to different staggered 
mesh algorithms and it was found to be superior by 
its authors [ 11. The programs mentioned here differ 
significantly, making it difficult to determine why some 
researchers are critical of the staggered mesh algorithm 
while others are not. 

The argument that motivated the author to consider the 
cell-centered momentum advection algorithms, which are 
discussed in the following sections, is the complexity of 

implementing the staggered mesh algorithm on unstruc- 
tured meshes. The number of edges for a staggered cell is 
determined by the number of nodes surrounding a par- 
ticular node. Staggered cells with three or live edges are not 
uncommon in finite element calculations and vectorizing 
their advection adds complexity. An additional difficulty is 
many of the higher order accurate monotonic advection 
algorithms require quadrilateral cells in two dimensions 
(see, however, Zalesak [ 283 ). 

2. THE SALE MOMENTUM ADVECTION ALGORITHM 

One-Dimensional Advection 

The SALE algorithm was originally developed as a two- 
dimensional algorithm, but the one-dimensional simplifica- 
tion is described here because it gives a great deal of insight 
into the behavior of the two-dimensional algorithm. It is the 
only cell-centered momentum advection algorithm con- 
sidered here that requires the advection of only one variable 
for each velocity component. While its efficiency is excellent, 
the use of a single variable introduces significant dispersion 
errors that can be corrected only by advecting additional 
variables. 

The basic idea behind the SALE algorithm is that the 
change in the momentum of a node is one half of the sum of 
the changes in the momentum of its two adjacent cells. The 
specific cell momentum, pj+ ,,2, the total cell momentum, 
pj+ l/2> and the nodal momentum, P,, are defined by 
Eq. (2.1): 

I 
Pj + I/2 = 5 Pj + l/2Cvj + vj + I 1 

pj+1/2=~“j+1/2(uj+vj+1) 

Pi = MjV,. 

(2.1) 

The new velocity is calculated by using the momentum 
fluxes. The change in the cell momentum from the advection 
is denoted dPjp ,,2. 

APji1/2=Pj~Ifj-1-pjfj 
Pf=P,’ +i(APjp1/2+AP,+1/2) 

vj+ = Pi’ /M f . 

(2.2) 

This algorithm can be implemented using mass coor- 
dinates and mass fluxes by advecting the average cell 
velocity, I)i + ,,2, instead of the specific momentum. The only 
change in Eq. (22) is pjfj is replaced by I?~,. 

The consistency condition is then trivially satisfied 
because the change in the mass of a node is equal to one half 
of the sum of the changes in the mass of the adjacent cells, 

v+ -CM/ +(1/2)(Pj-,~-,-Pj+I~+cl)l “J’ =v- 
J - 

%+ 
J . (2.3) 
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It is important to realize that this algorithm must be 
implemented in a form equivalent to Eq. (2.2) and that the 
final velocity should not simply be derived from the final 
momenta of the two cells. The diffusivity associated with 
using the latter approach can be appreciated by considering 
the result when the volume fluxes are zero and M - equals 
M+, 

1 (l/2) M,Y l,*(v,: 1 + v,- ) 

VI’ = z 4+ 
(2.4) 

1 c-v,: + Al,“_ ,i2v,: , + M:+ ,p v,:+ , 
2 4Mf 

Equation (2.4) conserves the momentum, but it smears out 
any velocity discontinuity in only a few timesteps. This error 
can be regarded as an inversion error because the cell 
momentum, a function of the nodal velocities, is not 
inverted exactly to recover the nodal velocities. An exact 
inversion, which is performed later, requires the solution of 
a set of simultaneous linear equations and the specification 
of extra boundary conditions. 

A von Neumann Analysis 

A dispersion analysis demonstrates that the SALE algo- 
rithm in Eq. (2.2) has dispersion errors that are independent 
of the underlying cell-centered advection method. For an 
excellent review of the von Neumann analysis method and 
its application to dispersion problems, refer to Trefethen 
c221. 

An explicit advection method that can be written in the 
form of Eq. (2.5) will give a complex dispersion equation, 
where 9 is a complex polynomial, the value of 4 at node j 
for timestep n is #J!, the constant mesh spacing is J, and the 
timestep is h: 

d;+‘=$;+9(c,h,J, . . . . 4;-,,q,cqJnfl, . ..I (2.5) 

e id = 1 + g3(eXJ) 

p(e’5”) = 1 flje’cY for the appropriate range of j. (2.6) 

The dispersion equation has the general form given in 
Eq. (2.7), where $ and $?? denote the real and imaginary 
parts of 9, respectively: 

oh=tan-’ ( > 
e 

1+% . (2.7) 

Recognizing that the relations in the above equations are 
periodic in oh and [J, the normalized frequency and wave 
number are defined to simplify the notation. 

o=coh, cf= <J. (2.8 1 

The normalized phase velocity, the normalized group 
velocity, and the amplification factor, G, are calculated: 

cp = w/t (2.9) 

FK=(l +$)’ 
cos2(6) (1 +~)~-q.3]. 

[ 
(2.10) 

G=&f+(l+~r:)* (2.11) 

The von Neumann analysis of the SALE algorithm 
proceeds by first calculating the increment in the cell 
momentum: 

Pr+,,2=~(V.;+Vj’+,)=~(1+e~‘6)Vl 

AP7~~,2 = P~~~j2 - Py+ 1j2 = i( 1 + epic) pv;. 
(2.12) 

The velocity is updated from the changes in the cell 
momentum: 

v;+L V~+$(AP,+~I~+AP~-,,~) 

e’“vy = a( 1 + &)( 1 + e-j’) 90: 

= $( 1 + cos(f)) 9%;. (2.13) 

The dispersion relation for the SALE advection algo- 
rithm is given by Eq. (2.14) 

w=tan’ 
(l/2)(1 +cos([))$ 

> I+ (l/2)(1 +cos(t))q 
(2.14) 

By comparing Eq. (2.14) to Eq. (2.7), we see that the cell- 
centered advection algorithm has the effect of introducing 
an extra dispersion factor, Q?, of i( 1 + cos(g)) in front of the 
spatial part of the difference stencil, P. For small values of 
[, $( 1 + cos([)) is approximately one, and the behavior of 
the node-centered and cell-centered algorithms is almost 
identical. 

When [is rr, the dispersion problems with the SALE algo- 
rithm appear. The coefficient i( 1 + cos([)) is zero, making 
CT, zero, and therefore, by Eq. (2.9), the phase velocity must 
be zero independent of the choice of 9. By defining @ as 
i(l + cos([))S, and using Eq. (2.7), the group velocity 
must also be zero independent of the choice of the under- 
lying advection algorithm: 

- 
$=i(l+cos([))$-isin([)q=O 

- 
(2.14) 
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Not only is the wave associated with [ equal to rr not 
advected, it is also not damped out, 

= 1. (2.15) 

The magnitude of these dispersion errors is demonstrated 
later with example calculations. As a consequence of the 
dispersion errors, the algorithm does not inherit the 
monotonicity of the underlying cell-centered advection 
algorithm. 

Two-Dimensional Advection 

The two-dimensional algorithm is a straightforward 
extension of the one-dimensional algorithm; the change in 
the nodal momentum is the average of the changes in the 
momentum of the cells surrounding it. The x and y com- 
ponents of the velocity are advected in an identical manner 
and the symbol “II” is used to represent both components 
without distinction: 

P(k+ i/2./+ l/2)= i&k+ 1/2,/+,,2)(~(k.I)+ v(k+ 1.0 

+v(,+l,l+l)+~~k,1+1)) 

P,k + l/2, /+ I/2) = 4 ‘A4 (k+ 1/2,1+ ,,2)(~(k,O + u(k+ ,,I) 

(2.16) 

+ v(k+ l,/+ 1) + u(k,l+ 1)). 

The change in the cell momentum due to the advection is 
denoted Ap,k + 112, I+ 1/z), 

X [Ap(k - 112, I- 112) +AP (k + l/2.1- l/2) 

+ Ap,k+ l/2,/+ 1/2) + Ah- lj2,l+ l/2jl. (2.17) 

A von Neumann analysis of Eq. (2.17) gives a result that 
is similar in form to the one-dimensional results presented 
above. The mesh spacings in the k and 1 directions are K and 
L,[istK,andqisqL: 

(2.19) 

The dispersion characteristics of the cell-centered 
momentum advection algorithm differ from the underlying 
cell-centered advection algorithm because of V. The one- 
dimensional results of the previous section are recovered in 
the k or 1 directions by setting q or 5 to zero, and the group 
and phase velocities can be calculated in other directions if 
so desired [22]. 

58l/lOO/l-II 

3. THE SHALE MOMENTUM ADVECTION ALGORITHM 

One-Dimensional Advection 

Margolin and Beason [17] found that the SALE algo- 
rithm created spurious oscillations in SHALE [14] that 
dominated the solution near regions of steep gradients. 
They indentified the weak point of the SALE algorithm as 
being the redistribution of the cell-centered momentum to 
the nodes and sought to improve it. The method they 
created and analyzed advects two variables in one dimen- 
sion and three variables in two dimensions. 

In the development of their method, Margolin and 
Beason use a translation operator and they compare the dif- 
ference between the Taylor expansions of the continuum 
translation operator and the discrete representation of the 
translation operator generated by the advection stencil. 
Only their algorithm is presented; the interested reader is 
referred to their paper [ 171 for its derivation. 

Instead of considering the momentum distribution to be 
a piecewise constant distribution on a staggered mesh, it is 
approximated as a linear function on each cell. In addition 
to the cell momentum, Pj+ 1,2, the momentum gradient, 
sj+ 1129 appears in their Taylor expansion. Note that the 
cell-centered definition of the momentum here differs from 
the definition used in the previous section, 

p]=p,+l/2+ sj+l,2(xj-xj+112)=Mivj 

Pj+l=Pj+l/2+sj+,1/2(xj+I-xj+1/2)=Mj+lvj+l 

P. ,+1/2=t(P,+l+Pi)=~(1Z/iiU,+Mj+lu,+fI) 

(3.1) 

sj+ l/2 = 
pj+l-pj 

xj+l-xj 

The momentum at nodej could be updated by advecting 
P and S and then using Eq. (3.1), but the result would not 
be symmetric. A symmetric form for updating P, is obtained 
by using the Taylor expansions in cells j + $ and j - i and 
averaging the result. Instead of updating the cell momentum 
and the momentum gradient, the momentum is updated 
directly from the fluxes. The coordinates used in Eq. (3.2) 
are the rezoned spatial coordinates, not the original 
Lagrangian coordinates: 

J’t = PI- + 4 [APi- l/2 + ASj- 1/2(x, -Xl- 112) 

+ Af’j+ I/Z + ASj+ 1/2(Xj-xj+ 1,211 
v,? = P,‘lM,’ . 

Proceeding as before, P and S are expressed in 

UJ’ = V,’ + iCAP+ l/2 + Alp,+ l/z 

+&AS,_ l/2 - i A,S,+ l/21 
sj+l/2=v~<l-u,- 

P ,+1,2=~(u,~I+q. 

(3.2) 

terms of v : 

(3.3) 
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The von Neumann analysis shows that the new algo- 
rithm, Eq. (3.3), has the same dispersion properties as the 
underlying advection algorithm, Eq. (2.12): 

si+1,2= (ei5 - 1) vj 

P ,+1/2= $(eiF+ 1) v, 
(3.4) 

e”vj= [l + $((l +e’[)(l +e--i5) 

+ (e’<+ l)(e”- I))] Yvi 

= [l +P] vj. (3.5) 

The von Neumann method is only applicable to linear 
advection methods and most of the popular methods are 
nonlinear and monotonic. Unfortunately, the SHALE 
method does not preserve the monotonicity characteristics 
of the underlying advection algorithm. Margolin and 
Beason [ 171 advect S with the donor cell algorithm to 
reduce the spurious oscillations of their method, but this 
does not completely solve the problem. Recent work on this 
algorithm by Margolin shows that special flux limiters must 
be constructed using the nodal velocities in order to guaran- 
tee monotonicity [23]. It is not clear how these limiters 
could be translated into the slope-limiting format developed 
by van Leer. 

Advection in Two Dimensions 

The extension of the method into two dimensions is 
accomplished by keeping the constant and linear terms in a 
Taylor series expansion in two dimensions. The x and y 
superscripts denote the direction of the momentum 
gradient, S : 

P(X> Y) = P(k + l/2, /+ I/2) 

+S-~k+1/2,1+,,2)(X-~(k+1/2,/+1/2~) 

+~~~+1/2,/+1,2)~~-Y~k+1/2,/+1/2)~ 

p(k+ 1/2,i+ l/2) = $ (P(k, /) + P(k + I, I) 

+P (k+l,l+l)+p(k,l+1J (3.6) 

S” 
3P 

(k+ l/2,/+ l/2) 
=- 

ax 
(k + 112, / + l/2) 

s:k,,,2,,+l,2,=$ 
(k+ l/Z,/+ I/2) 

The increment in the momentum at node (k, I) is 
the average of the momentum increments for node (k, 1) 
calculated from its four surrounding cells. As in the one- 
dimensional case, the momentum is updated by using the 
fluxes directly, and AP and AS are notational conveniences. 
For compactness, the rezoned displacement vectors $k,lt - 

x(k+ l/Z,/, l/2) and Y(k,/, - Y(k + 1l2.l+ 1l2) are denoted 

Ax (+l/2.+1/2) and AY~~~,~,~~,~,, 

+“;k+K,I+L, AxOL, 

+ AS;k+K,/+L) AY,K..,l. (3.7) 

The reason the momentum update must be performed 
with the fluxes instead of the updated values of P and S is 
that the velocity field is bilinear (i.e., it contains a term 
involving xy) and the momentum calculated at the nodes by 
using Eq. (3.6) does not agree exactly with the nodal 
momentum. This situation is similar to the one encountered 
with the SALE algorithm. The diffusivity that is introduced 
by using the updated values can be assessed by assuming 
that the fluxes are zero, the mesh is uniform, and the density 
is constant. The final velocity can be written entirely in 
terms of the initial velocities just as in Eq. (2.4): 

V&l) = hJ12v,,,,+ 2(v;,,- I) + v;+ 1,I) 

+~~~,l+l~+~(~-1,I))-(v~-,,l~l)+v~+l,/-I) 
+~(~+l,/+l)+~~(~kl./+I) 11. (3.8) 

If the problem is one-dimensional and it is aligned with 
the mesh direction, such that either uCk f n, ,) or vCk, ,+ n) equals 
v+,l) for all values of n, then this error is eliminated. 

The two-dimensional algorithm does not introduce any 
extra dispersion errors in the mesh direction, but it does 
affect the underlying advection algorithm along the mesh 
diagonals. The extra dispersion coeflicient, %‘, for this algo- 
rithm is given by Eq. (3.9). When [or q is zero, %? equals 1 .O 
and no extra dispersion is introduced into the problem: 

kq[, ij) = 4[3 + cos([) + cos(ij) -cos([) cos(ij)]. (3.9) 

Eliminuting the Dispersion Error 

The author and Margolin [23] independently discovered 
that the dispersion error defined by Eq. (3.9) can be 
eliminated by including the bilinear term in the Taylor 
expansion: 

p(x, Y)=p(k+l/2,/+l/2) 

+ S” (k + l/2,/+ 1,2)tx - x(k + l/2./+ l/2,) 

+S~k+1/2,1+1,2,(Y-.hk+1,2.1+1,2,) 

+ s v 
(k+I/2,/+~,2,~X-X~k+l/2./+1,2)~ 

x (Y - y(k+ l/Z./+ I/Z)) 

22D I 

SXY 
“1 

(k+ l/2.1+ i/2) = - 
ax aY fk + l/Z./+ I/2)’ 

(3.10) 
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The bilinear term is just the hourglass mode momentum. 
In most hydrodynamics codes, the hourglass velocity, s.‘?, is 
approximated by Eq. (3.11) but it is orthogonal to the 
straining and rigid body modes only for rectangular cells. 
The cell area is A : 

-“(k+l,/+l)+o(k,/+l) ). (3.11) 

Flanagan and Belytschko [24] defined the hourglass 
velocity precisely as the bilinear part of the velocity field and 
derived an explicit expression for s$+ 1,2,,+ 1,2) based on that 
definition. The same mode shape is derived by Margolin 
and Pyun [25], but they use it to filter the velocities. Kosloff 
and Frazier [26] also used the same definition in an earlier 
paper, but their approach required the solution of a system 
of linear equations. Note that all the definitions agree when 
the mesh is rectangular. 

The bilinear term must be advected, so that four variables 
are advected for each velocity component instead of original 
three proposed by Margolin and Beason, and Eq. (3.7) is 
modified to include the bilinear contributions: 

+As~k+,,~+.,AX~~,~)+As~k+~,~+L) AyoL, 

+ Av+K,,+ L) A-%, L) AY,, LJ. (3.12) 

Applying the analysis methods used on Eq. (3.7), it can be 
shown with some algebra that the inclusion of the bilinear 
term eliminates the zero flux error in Eq. (3.8) and the 
dispersion error in Eq. (3.9). 

4. A GENERAL CLASS OF CELL-CENTERED 
ALGORITHMS 

The Inversion Error and Dispersion 

The general scheme of the previous two algorithms is to 
detine a set of cell-centered variables in terms of the nodal 
velocities and masses, advect them, and then update the 
nodal velocities from the increments in the cell-centered 
variables. A class of cell-centered algorithms can be written 
in the form of Eq. (4.1), where YC,.i+ ,,2J are the new 
cell-centered variables and LY ranges over the number of 
variables. A and B are linear transformations that can be 
functions of any of the cell or nodal variables. Two indices, 
J and Iv, take on both positive and negative values and their 
range is dependent on the advection stencil. All the summa- 
tions are indicated explicitly in this section: 

A Iy~-x3i+J12~= '&j+J/2)- 'G,jtf/2) 

= m%,j+J,2,) 

(4.1) 

a. J 

The single argument in the advection stencil, 8, denotes 
the variable that is being advected and which cell is being 
advected. All the other arguments are suppressed for nota- 
tional simplicity. For a dispersion analysis, the advection 
algorithm is assumed to be linear: 

v,+ = v,-- + c B @,.i+J,2~F( yC~,,+ J,2,) ~ J 

(4.2) 

e @=1+$fp’. 

The underlying cell-centered advection algorithm’s 
dispersion characteristics are altered unless %? is 1.0. 

The inversion error is described by the relationship 
between the final nodal velocity and the initial velocities 
when the fluxes are zero and the nodal velocity is updated 
from the final values of Y (which remain unchanged in this 
case): 

vl’ = c B ~~,i+J12,A~~,j+Jf2+N12~v~~+J/2+N~2. (4.3 1 
z3J.N 

By comparing Eq. (4.2) and Eq. (4.3) and method that 
has an inversion error must also modify the dispersion 
characteristics of the underlying cell-centered algorithm. To 
avoid dispersion problems, B must be an inverse of A. The 
same arguments can be made in two or three dimensions by 
replacing each scalar index j, by a vector index, j, having 
two (j,, j,) or three (jl, j,, j,) components. 

The New Algorithm 

The simplest form for A that results in a symmetric 
algorithm is the identity: 

{ ;::;;::;:;}=[; Y] iu/?,}. (4.4) 
To conserve momentum, Y is advected with the mass 

fluxes: 

y(Tth j+ l/2) 

= 
M,: +I/2 y&j+1/2)+ yCm,j-l)J-l- y(m.,+lJJ+i-l 

MA I/2 

(4.5) 
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The inverse of Eq. (4.4) can be parameterized by 8: 

vi= [O 1 -01 {;;;:;I ;;;;). (4.6) 

Mass weighting is chosen for the inverse here: 

The two-dimensional 
denotes the transpose: 

(l,k+1/2,/+1/2) 1 

C&k+ l/2,1+ l/2) = 0 

(3, k + 112, /+ l/2) 0 

(4, k + l/2, I + l/2) 0 

extension follows where [ 1’ 

0 0 0 
1 0 0 
0 1 0 (4.8) 

0 0 1 

rM (k+ l/2,/+ l/2)1’ (%.k+ l/2,/+ l/2)) 

This algorithm is called the HIS (half index shift) algo- 
rithm in the remainder of this paper. 

Monotonicity 

A function is monotonic over an interval if its derivative 
does not change sign. Monotonic advection algorithms 
guarantee that when a monotonic distribution is numeri- 
cally advected the resulting distribution is also monotonic. 
This means that no new maximums or minimums are 
created. Additionally, monotonic algorithms are also TVNI 
(total variation not increasing) [27]. 

The HIS algorithm unconditionally inherits the 
monotonicity properties of the underlying algorithm. The 
velocity of node j is shifted left to cell j - f , advected, then 
shifted right to cell j - 4 and advected. The mass-weighted 
average of the two shifted velocities defines the new velocity 
at node j. The sign of the derivative of v is determined by the 
differences between the values of v at succeeding nodes and 
it is independent of the mesh spacing. In particular, on a 
general mesh with arbitrary zoning, shifting the velocity 
profile to the left or right by a constant logical value does 
not change the monotonicity of the velocity profile. 

The issues associated with monotonicity in two or three 
dimensions are much more complex than they are in one 
dimension. A great deal of research has focused on multi- 
dimensional advection algorithms in recent years [28-3 11. 
Momentum advection algorithms that are not monotonic 
in one dimension, however, will not suddenly become 
monotonic in two dimensions. The HIS algorithm is 
monotonic in multidimensions for the same reason that it 
is monotonic in one dimension: a logical shift of the velocity 

field does not alter its monotonicity and the final velocity i 
the mass-weighted average of the shifted velocities. 

For the scalar advection equation with uniform zoning 
the values of v from the HIS algorithm will agree to withii 
the roundoff error with the values calculated using the 
staggered mesh algorithm regardless of the underlying 
advection algorithm. The reason for this result is that on ; 
uniform mesh both the original mesh and the staggerec 
mesh have the same spacing. 

5. TAYLOR EXPANSIONS OF THE ADVECTION 
ALGORITHMS 

The purpose of this section is to demonstrate that the HIS 
algorithm, a modification of the SHALE algorithm, and the 
staggered mesh algorithm are first-order approximations 01 
each other. When the underlying cell-centered advectior 
algorithm is linear, a modified version of the SHALE algo- 
rithm, the HIS, and the staggered mesh algorithms give 
identical answers. The SALE algorithm also approximates 
these algorithms, but it is shown to have a first-ordet 
truncation error. 

A one-dimensional analysis is presented first. The flux 01 
Y through node j is denoted F(\y,, xj, A), where the vector 
arguments denote arrays of values centered about node j. 
The length of the arrays is dependent on the choice of the 
advection algorithm. Although x is used as a coordinate 
here, the analysis is equally valid for volume and mass 
coordinates, 

I,= { y~-m+*/2, ..‘2 yji1/22 yj+1/22 ...3 yj+m-112) 

x,j= {Xjem, . ..) XI, . ..) xj+m}. 
(5.1) 

Using the flux notation, the staggered mesh momentum 
advection algorithm is described by Eq. (5.2), 

where 

-E;(“J+ l/2, Xj+ l/2, .$+ 1/2)I, (5.2) 

The HIS algorithm, expressed in the same notation, is 
given by Eq. (5.4): 

” =& [“Jy,/2v~’ +F(vj-1/2, Xjxil,.&l) J 
J 

-F(Vj+ I/Z> ‘XI, J1) + MJ< 1/2V/ 

+F(vj~1/2,Xj,~)-F(Vj+L/2,xj+1,~+,)1. (5.4) 
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The terms in Eq. (5.4) can be regrouped and written in 
terms of Taylor expansions about the fluxes centered atj - i 
andj+ i, 

+ F(v.,- ,,2 3 XI’ .$)I- i(fIvj+ I/2, xi> x) 

+F(v,+,,*,xj+I,~+l))l 

- I;(‘,+ 1129 .Y,+l/Z, .$+ ~2) + W?2) 

+ ‘WAxI’)]. (5.5) 

Extending this analysis to two dimensions is 
straightforward although the expressions become quite 
lengthy. The staggered mass fluxes are defined in terms of 

-600 

b b 
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,o.ooo 30.000 50.000 70.000 90.000 
X 

FIG. 3. The linear, scalar advection equation is solved with (a) the FIG. 4. Both (a) the van Leer and (b) the SUPG algodthms exhibit 
van Leer algorithm and (b) the SUPG algorithm for c equal to 0.1. severe dispersion errors with the SALE algorithm. 

the cell edge fluxes, Eq. (1.9), and the staggered geometry is 
also a linear combination of the cell geometry. The Taylor 
expansions for the fluxes will have the same basic rela- 
tionships as those in Eq. (1.9) but with the appropriate trun- 
cation terms added to the right-hand side. For example, the 
Taylor expansion for the flux of v through the staggered 
edge (k - $, I) is the average of the fluxes of v through cell 
edges (k--1,1-4), (k-1,1+$), (k,l-i), and (k,l+$) 
with second-order truncation errors in Ax and7 

It does not appear possible to generate a higher order 
approximation of the staggered mesh algorithm and to 
retain monotonicity by extending the HIS algorithm. To 
demonstrate the difficulty, it is sufficient to consider only the 
argument x in the fluxes. All the other arguments in the flux 
function F are suppressed. The flux at x1+ 1,2 is to be 
approximated as a linear combination of fluxes evaluated at 
the nodes: 

(5.6) 

a _ 
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.600 
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A Taylor series expansion generates three equations that A modified version of the SHALE algorithm can also be 
the coefficients Mu must satisfy in order to have a truncation shown to approximate the staggered mesh algorithm. The 
error of O(Ix,-xj+1,213): velocity average and difference across the cell are calculated 

and advected using mass fluxes, 

;a,=1 
P~+1,2=~(~j+~j+l) 

; %(Xk - 
(5.8) 

-x,+1,2)=0 (5.7) sj+ l/2 - - (0, + 1 - Vi). 

; ‘&k - xj+ l/2)* = 0. The velocity of nodej is calculated from Eq. (5.9): 

Choosing a set of coefficients that satisfies the three equa- v + = & CM,+_ I,,@,“_ I,2 + is;- l/2) I 

tions is not difficult, but to retain monotonicity, all the elk 
I 

must be positive by the arguments in the previous section. + M,“, 1,2(P,t+ l/2 - is,“+ 1,Jl. (5.9) 
The last of the three equations has the strictly positive 
coefficients (xk - xj+ 1,2)2 for each elk, which imposes the The algorithm is consistent (s is zero for a uniform 
requirement that some of the ak must be negative in order velocity) and for the scalar advection problem on a uniform 
for the right-hand side to equal zero. Hence, it is not mesh, this algorithm reduces to the SHALE algorithm. Like 
possible to construct a higher order approximation to the the SHALE algorithm, it is not monotonic. 
staggered mesh algorithm that is also monotonic. The analysis proceeds in the same manner as for the HIS 

a C 

1.000 1.000 - - 

.600 300 - - 

.200 ,200 - - 
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X 

FIG. 5. The SHALE algorithm does not have dispersion problems, but it does not inherit the monotonicity of the underlying cell-centered advection 
algorithm: (a) p and s with van Leer; (b) p-van Leer, donor; (c)p and s with SUPG; (d) pSUPG, s-donor. 
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algorithm, but with a few small differences. First, the s and the addition of the truncation terms associated with the 
p terms are expressed in terms of their fluxes: velocities from Eq. (5.11). 

Pairs of s and p fluxes, with the appropriate coefficients, are 
expressed in terms of the nodal velocities through a Taylor 
series: 

F(P,--,,xj~,,~-,)+~F(sj~l,xj-,,?l-,) 

=F(vj-l,2~xj-t,~-I)+o(ldv12)~ (5.11) 

Results similar to those in Eq. (5.5) immediately follow with 

b 

-.200 

Analyzing the original SHALE algorithm in this manner 
is complicated by its use of volume fluxes instead of mass 
fluxes and because the updated cell coordinates appear in 
the momentum update. 

If the average cell velocity is advected and the mass 
fluxes are used, the SALE algorithm can be viewed as an 
approximation to the staggered mesh algorithm, but unlike 
the other algorithms, it has a first-order truncation error. 
The analysis assumes that the nodal momentum is updated 
from the increments in the cell momenta. Two terms that 
cancel are added in the next equation to clarify the steps, 

MT 
vf =--J-v: + 

J M.+ J / 

-& CF(Pj3 xJ~~)+~(Pj+I~xj+l~J)+~~l. (5.12) 
J 
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FIG. 6. The HIS algorithm is not very sensitive to mesh distortion. 
None of the momentum algorithms exhibit a large sensitivity to mesh 
distortion: (a) van Leer solution on a distorted mesh; (b) HIS van Leer 

--2oo 1 I0.000 30.000 50.000 70.000 90.000 

X 

FIG. 7. An exact inverse is used in the SALE algorithm to 
demonstrate that the approximate inverse is the source of the dispersion 
errors: (a) SALE SUPG with an exact inverse; (b) SALE van Leer with an 
exact Inverse. solution on a distorted mesh. 
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A first-order truncation error is generated by the 
approximation of v, + r,* : 

sm- 13 xj- I, .7-I) + HP,> xj, $1 

= Q$(Pj- 1 + Pjh xj- l/29.7-1/2) 

+ O(l~X12> l4x VP12) 

=F($(vj-3/2 +2vj-1/2+vj+1/2)9 ‘]-l/2> x-I/Z) 

+ Wdx12, W12, W12) 

=F(Vj- l/2> Xj- 112, .f- 1,~) 

+ O(ldvO + QWx12, lkf712, lM2). (5.13) 

a 58.88 t 
rontD”r ICVeJs 

All the other errors are second order because the 
appropriate variables are centered, but the velocity term 
ifvj-3/2 + zvj- l/2 + vj+ l/2) contributes a first-order trunca- 
tion error because v,- 1,2 is not centered between the 
adjacent velocity vectors. 

6. EXAMPLE CALCULATIONS 

The Linear Scalar Advection Equation 

The dispersion errors discussed in the previous sections 
are demonstrated by solving the linear scalar advection 
equation. A square pulse 13 cells wide (cells 10 through 22) 

Plot along line y=x. 

FIG. 8. (a) A square pulse is advected along the mesh diagonal using a spatial operator split. (b) The staggered mesh algorithm solution. (c) The 
SALE solution exhibits dispersion errors in both directions. (d) The randomly distorted mesh used in the HIS solution. (e) The HIS solution on a 
distorted mesh. 
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with an amplitude of 1.0 is transported with a velocity of 0.1 shown in Figs. 5c and d, and they demonstrate that the 
for 500 timesteps. There are 100 cells with a uniform width SHALE algorithm does not change the dispersion charac- 
of 1.0. teristics of the underlying advection algorithm. Note that 

The solutions obtained by using the van Leer [9] and the the-solution in Fig. 5c is identical to the solution in Fig. 3b. 
SUPG [ 151 advection algorithms are shown in Fig. 3. The For a uniform mesh, the staggered mesh and HIS algo- 
SALE solutions are shown in Fig. 4. Note that the high fre- rithms give solutions that are identical to those shown in 
quency noise is located at the original position of the pulse Fig. 3. To demonstrate the effect of a nonuniform mesh, the 
and that it appears in both the nonlinear van Leer and the square pulse was advected with the cell width defined by 
linear SUPG solutions. The van Leer SHALE solutions are Eq. (6.1) for cells 20 through 80. The remaining cells have a 
shown in Figs. 5a and b, where the van Leer algorithm width of 1.0: 
is used to advect both P and S in Fig. 5a, while the donor 
cell algorithm is used for S in Fig. 5b. In both cases 
monotonicity is lost. The SUPG SHALE solutions are 

Ax,= 1.0+0.8sin ($(i--20)). (6.1) 

I.4 
Plot along line y=X. 

FIG. t&Continued 
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The unmodified van Leer solution is shown in Fig. 6a, momentum equation, Eq. (2.18), to verify the relationship. 
and the HIS solution, which is almost identical, is shown in There is one more node than there are cells in one dimen- 
Fig. 6b. The staggered mesh solution is virtually identical to sion, requiring that the value of u must be assigned at one 
Fig. 6b and is not shown. The other two momentum advec- node. For this demonstration, vi is assigned the value of 0.0, 
tion algorithms give solutions that are essentially identical and a recursive relation, Eq. (6.2), gives the remaining 
to the ones shown in Figs. 4 and 5. values, 

A relationship was demonstrated between the inversion 
error and the dispersion error in Section 4. The SALE algo- 
rithm was modified by exactly inverting the velocity- 

(6.2) 

As shown in Fig. 7a, using the exact inverse with the 
linear SUPG algorithm gives results that are identical to 
using the SUPG algorithm alone, Fig. 3b. Monotonicity is 
lost when the van Leer algorithm is used, Fig. 7b, but the 
high frequency oscillations travel with the square pulse and 
they can not be attributed to dispersion errors. The high 
frequency oscillations are a result of the nonlinearity of 
the van Leer algorithm: the sum of two functions advected 
independently, !Y: + Y:, is not equal to the value of the 
two functions advected together, ( Y1 + Yu,) +. 
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FIG. 9. A strong shock problem on a coarse mesh is solved to 
demonstrate the diNerences between the different momentum advection 
algorithms: At t = 0.06, v = 62.5, and e = 1950 after the shock. 

The same errors that appear in one dimension also 
appear in two dimensions. A square pulse, shown in Fig. Sa, 
is advected along the mesh diagonal with c equal to 0.25, 
using the van Leer algorithm and alternating directional 
sweeps. The staggered mesh solution is shown in Fig. 8b. As 
shown in Fig. 8c, the SALE algorithm exhibits stationary 
dispersion errors, just as it did in one dimension. The results 
for the HIS algorithm on a distorted mesh, a section of 
which is shown in Fig. 8d, is shown in Fig. 8e. 

The Shocktube Problem 

Although the dispersion and monotonicity problems 
associated with cell-centered momentum advection algo- 
rithms have been demonstrated both analytically and 
numerically, the real value of the algorithms is dependent on 
how well they work for physical problems. To magnify the 
differences between the different algorithms, a strong shock 
problem is solved on a coarse mesh. The data for this 
problem, see Fig. 9a, were suggested by Christensen [Zl], 
and the analytical solutions are shown in Figs. 9b and c. 
A single material is used in the calculations, with the initial 
properties of the gas being spatially dependent. For 
problems less challenging than this one, all the algorithms 
give essentially identical solutions. 

The Lagrange step used here is fairly standard. The only 
departure from standard practice is the flux-limited shock 
viscosity which was developed by Christensen [21, 321. The 
constants C, and C2 are set to 1.33 and 1.00, a is the 
soundspeed, and V,vLu is the van Leer-limited velocity 
gradient at nodej. This viscosity gives a sharper shock front 
than the standard formulations: 

P(C1C~12- c2 aCu1) if [u]dO 
9= 

1 0 if Cul >O c6.3J 
[u] = uj+ 1 - uj + + Llx(V,v,L, u + vyLu). 
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The Eulerian step uses the van Leer advection algorithm. 
The density and internal energy are advected with transport 
volumes. Energy conservation is enforced by approximating 
the kinetic energy lost by the momentum advection and 
adding it to the internal energy. This update is performed 
only on the cells that have a nonzero shock viscosity. The 
cell kinetic energy per unit mass, t, is defined as i (uj + u,T+ 1 ) 
and it is advected using mass coordinates and transport 
masses. The average kinetic energy per unit mass trans- 
ported through node j by the momentum advection, t’, is 
defined as a((~,? )2 + (II,: )‘). The increment in the total 
internal energy of cellj + 4, AEj+ ,,2, is calculated according 
to Eq. (6.4), 

AEj+,,,=maxCO,J)(t,-tl)-j;+,(tj+,-tl+I)l. (6.4) 

The two similar solutions obtained by using the staggered 
mesh algorithm with mass and volume coordinates are 
shown in Figs. 10a and b, respectively. In both cases consis- 
tent transport masses are used for the momentum advec- 
tion. The only difference between the mass and volume 
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coordinate solutions is which coordinates are used in the 
van Leer algorithm to calculate the velocities. The solution 
obtained with mass coordinates is slightly closer to the 
theoretical value of 1950 for the internal energy at the shock. 

The SALE solutions, using transport masses and 
volumes, are shown in Figs. 1 la and b, respectively. The 
internal energy is higher in the transport volume solution 
than in the transport mass solution, a feature that is found 
to be common to all algorithms. A sharp velocity peak 
occurs in both solutions at the front of the shock. 

Unfortunately, the SHALE algorithm, as the author 
understands it, did not run the problem to completion. The 
modified version that was presented in Section 5 worked 
quite well. The solution obtained with the modified algo- 
rithm is shown in Fig. 12a, and it compares favorably to the 
staggered mesh solution. Both s and p were advected with 
the van Leer algorithm; using the donor cell algorithm for 
s made little difference in the solution. A second solution 
was obtained by scaling s and p by the cell density and then 
advecting them with the transport volumes instead of the 
transport masses; see Fig. 12b. The volume scheme also 
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FIG. 10. The YAQUI staggered mesh algorithm gives the best solution; (a) with mass coordinates; (b) with volume coordinates. 
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FIG. 11. The SALE algorithm is the most efficient, but the solution is not as good as the other cell-centered solutions obtained with transport masses: 
(a) with mass coordinates and fluxes; (b) with volume coordinates and fluxes. 

satisfies DeBar’s consistency condition: a uniform velocity 
will remain uniform. Both the internal energy and the 
velocity are too high by at least 25 %. 

A similar result is obtained for the HIS algorithm; see 
Fig. 13. The transport mass algorithm works, but the trans- 
port volume scheme (the right-hand side of Eq. (4.4) is 
scaled by pj+ 1,2) gives a very poor solution. In fact, the 
modified SHALE and HIS algorithms give nearly identical 
errors when transport volumes are used because they 
approximate each other to within second-order truncation 
errors. An attempt was made to run the staggered mesh 
algorithm with transport volumes, but the problem could 
not be run to completion because the shock overheating was 
so extreme that the time step became almost zero. 

7. CONCLUSIONS AND RECOMMENDATIONS 

The staggered mesh algorithm with consistent transport 
masses is attractive for a logically regular mesh based on 
both the analysis and the numerical experiments. It is more 
difficult to implement on an arbitrary mesh than a cell- 

centered algorithm because a staggered cell may have an 
arbitrary number of edges. 

The SALE algorithm is the most economical cell-centered 
algorithm, but it adds extra dispersion errors and it does not 
inherit the monotonicity properties of the underlying cell- 
centered advection algorithm. It does, however, work sur- 
prisingly well in strong shock calculations. When transport 
volumes are used, it gives the least objectionable answers of 
any of the cell-centered algorithms. For most simplified 
ALE calculations, where the Courant number is relatively 
low, this algorithm is more than adequate. 

The modified SHALE, HIS, and staggered mesh solu- 
tions are almost identical when transport masses are used. 
They give much larger errors than the SALE algorithm 
when the transport volumes are used. Unlike the SALE and 
staggered mesh algorithms, the HIS and SHALE algo- 
rithms require the advection of more than one variable for 
each velocity component. Of the three cell-centered momen- 
tum advection algorithms, only the HIS algorithm inherits 
the dispersion and monotonicity characteristics of the 
underlying advection algorithm, a definite advantage over 
the other two algorithms. The relative computational cost of 
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FIG. 12. The similarity between the solution obtained by using a modifted version of the SHALE algorithm with transport masses and the YAQUI 
solution verifies that the SHALE algorithm is an approximation of the YAQUI algorithm. When the transport volumes are used to advect the momentum, 
there is a large amount of shock overheating. (a) with mass coordinates and fluxes; (b) with volume coordinates and fluxes. 

the algorithms is heavily dependent on the overall architec- 
ture of the programs. For example, the architecture of 
DYNA2D seems to favor the staggered mesh algorithm, 
while Margolin reports that cell-centered algorithms are 
faster in SHALE [23]. 

An interesting aspect of the SHALE and HIS algorithms 
is that they both satisfy the consistency condition with 
transport volumes, and they do not add dispersion errors, 
but they still give poor answers with transport volumes and 
good answers with transport masses. Based on the strong 
shock calculations shown here, it is clear that transport 
masses should be used with the staggered mesh, SHALE, 
and HIS algorithms. 

HIS algorithms are the only two that inherit both the 
monotonicity and the dispersion characteristics of the 
underlying cell-centered advection algorithm. The SHALE, 
HIS, and staggered mesh advection algorithms closely 
approximate each other, based on their Taylor expansions. 
Cell-centered algorithms that use transport volumes and 
which also satisfy the consistency condition were shown to 
produce large errors in strong shock calculations. 

APPENDIX 

The van Leer Advection Algorithm 

8. SUMMARY Van Leer has contributed quite heavily to the literature 
on advection, and the purpose of this section is to define the 

Three momentum advection algorithms were reviewed, specific algorithm that is labelled the “van Leer algorithm” 
and the HIS algorithm was introduced. The dispersion and within this paper. The algorithm used here is often referred 
monotonicity characteristics of the four algorithms were to as the van Leer MUSCL algorithm [9]. 
analyzed. All the momentum advection algorithms reviewed The essential idea is to replace the piecewise constant dis- 
here are adequate for strong shock calculations provided tribution of 4 within a cell with a piecewise linear distribu- 
that transport masses are used. The staggered mesh and tion. The coordinate x can be a volume or mass coordinate. 
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FIG. 13. Like the SHALE solution, the HIS solution using transport masses is almost identical to the YAQUI solution. The errors in the SHALE 
and HIS solutions are almost identical when the transport volumes are used to advect momentum. (a) with mass coordinates and fluxes; (b) with volume 
coordinates and fluxes. 

The value of 4 at x,+ 1,2 is $j + 1,2, and the gradient of 4 is 
# 

'j+ 1129 

~(X)~~j+1/2+Sf+1/*(X~Xj+1/2)~ (A.1) x abs 

The van Leer algorithm is an upwind algorithm. When 
material is transported from cell j - i to j + $, the value of 
#j, associated withf,, is evaluated using the linear distribu- 
tion in cell j - i. If the direction of the flow is reversed, then 
the distribution in cell j + s is used. 

The values of 4j+ 1 and #,,, which are evaluated using 
Eq. (A.1 ) at the centroids fi+ 1 and A, are restricted to lie 
within the maximum and minimum values of 4,: 1,2, 4,; 1,2, 
and 4,; 3,2 2 in order to maintain monotonicity. Letting the 
initial width of the cell be Axj+ l,z and the width offj+ 1 and 
fjbe Axjand Ax~+~, the magnitude of the slope must satisfy 
the inequality given by Eq. (A.2) 

abs(sf+ 1,2) d 2 min 

The inclusion of the terms involving the max and min 
functions allows steeper slopes than would otherwise be 
obtained while still satisfying the monotonicity condition. 

The sign of the slope must be the same as the sign of the 
slope of the monotonic function, and it is set to zero if it is 
a local minimum of maximum: 

sgn(s~+1,2)=fCsgn(~j+3,,-~j+1,2) 

+sgn(~j+1/2-~,-,,2)1. (A.3) 

To achieve second-order accuracy in regions that have 
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smooth solutions, a second-order approximation of the 
slope is calculated by fitting a parabola through the values 
of 4 in the cells. The secon-order approximation is s,c+ 1,2, 
while the two first-order slopes appearing in Eq. (A.4) are 
s,F+ 1i2 and s,?+ 1/2 : 

SC 
(AXR/AXL) $h” + (AXL/AXR) 4” 

,+ 112 = AxL + AxR 

SL VL 
‘+I” = Axj+ ,,2 + min(O, Ax,) 

SR 24R 
J+Ifz=AX,,,jz - max(O, Axj + , ) 

d” = 4,; 312 - di, L/2 (A.4) 

4” = d]T 112 - 4,: I/2 

X 
R- 

- dx,+ 312 - xj+ 112 

x 
L 

= xj+ l/2 - x~- 112. 

The SUPG Advection Algorithm 

The streamline upwind Petrov-Galerkin (SUPG) 
method [ 151 is an implicit algorithm for the Navier-Stokes 
equations. It was developed by Hughes and his colleagues 
using finite element techniques. When it is reduced to an 
advection algorithm, it is linear and not monotonic. Strictly 
speaking, it is only applicable to nodal variables, but 
because the mesh and the velocity are uniform for the dis- 
persion analysis, it can be applied in this case. The general 
form of the algorithm in one dimension is given by 
Eq. (A.5), 

j W,($+cg)dx=O. (A.5) 

The weighting function, W,, and the interpolation of C$ 
are given by Eq. (A.6). The optimal value of G( is l/fi for 
the pure advection problem: 

W =N k k +cccs 
ax 

X ,+1--x 

x,j+ 1 -‘yj 
if x,+r 2X2X, 

Nj(x) = x-xj- 1 
Xj- Xj- 1 

if xjp, <x<xi 

(A.6) 

0 otherwise. 

SUPG is a semidiscrete algorithm, requiring that a choice 

be made for integrating in time a set of ordinary differential 
equations. A second-order accurate midpoint scheme is 
used here. The superscript refers to the timestep number, 

(A.81 

The difference stencil in Eq. (A.9) is obtained by 
substituting Eq. (A.7) and Eq. (A.8) into Eq. (A.6): 

K,=&cr 

R2=&ca 

(A.lO) 

The von Neumann analysis presented in the paper was 
performed on the assumption that the advection algorithm 
is explicit, but it is readily extended to implicit advection 
algorithms. Letting .c?’ and 9’ denote the complex polyno- 
mials associated with stencils on the left- and right-hand 
sides of the equation, the equivalent form for 9 is derived in 
Eq. (A.ll), 

pRVj = gLvj 

BL 
v’=-v.=(l+~)v, 

PR J 
(A.ll) 
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